Bemidji State University

BIOL 3710: Microbiology

A. COURSE DESCRIPTION

Credits: 4
Lecture Hours/Week: *.*
Lab Hours/Week: *.*
OJT Hours/Week: *.*
Prerequisites: None
Corequisites: None
MnTC Goals: None

Structure, classification, and physiology of bacteria and related microorganisms. Lecture and laboratory.
Prerequisites or Corequisites: One year introductory biology and one year introductory chemistry or consent of instructor.

B. COURSE EFFECTIVE DATES: 08/26/1997 - Present
C. OUTLINE OF MAJOR CONTENT AREAS
 1. Antimicrobial Chemotherapy
 2. Aseptic Technique
 3. Bacterial & Viral Identification
 4. Bacteriophages
 5. Clinical Microbiology, Epidemiology
 6. Clinical Microbiology
 7. Control of Microbial Growth
 8. Food Microbiology
 9. Historical Perspectives
 10. Human Diseases Caused by Bacteria & Viruses
 11. Human Diseases Caused by Fungi & Protozoa
 12. Industrial Microbiology
 13. Laboratory Safety and Epidemiology
 14. Measuring Microbes
 15. Microbes & Human History
 16. Microbial Ecology
 17. Microbial Evolution
 18. Microbial Genetics
 19. Microbial Growth Patterns
 20. Microbial Growth: Biosyntheise
 21. Microbial Growth: Cell Division
 22. Microbial Growth: Macromolecules
 23. Microbial Growth: Making of a Cell
 24. Microbial Growth: Nutrition & Energy
 25. Microbial Infections
 26. Microbial Interactions: Symbiosis, Predation, & Antibiosis
 27. Microbial Physiology
 28. Microbial Texonomy
 29. Microscopy
 30. Prokaryotic & Eukaryotic Cell Structures & Staining Methods
 31. Viruses of Eukaryotes
 32. Viruses

D. LEARNING OUTCOMES (General)
 1. identify the major characteristics that define the different taxa of microorganisms.
 2. understand the structure and function, genetics, biochemistry of microorganisms.
 3. practice basic principles of microbiological lab methods, including sterile techniques and basic microscopy.
 4. compare and contrast diverse-causing ability of various microorganisms.
 5. analyze the metabolic diversity and how it contributes to the ecology of microbes.

E. Minnesota Transfer Curriculum Goal Area(s) and Competencies
 None
F. LEARNER OUTCOMES ASSESSMENT
 As noted on course syllabus

G. SPECIAL INFORMATION
 None noted